EddyPro®是一款功能強(qiáng)大的渦度協(xié)方差數(shù)據(jù)處理軟件,用于計(jì)算CO2、H2O、CH4、其它痕量氣體和能量通量。EddyPro®野外版隨SmartFlux® 2系統(tǒng)安裝野外渦度監(jiān)測(cè)站上,可實(shí)時(shí)提供處理完成的通量數(shù)據(jù)。EddyPro®本地版可安裝在您的個(gè)人電腦上,可選擇各種處理方法對(duì)儀器獲取的原始數(shù)據(jù)做深度分析。
在Express模式可以快速簡(jiǎn)便地處理常見(jiàn)設(shè)置的數(shù)據(jù),而Advanced模式則具有多種選項(xiàng),可供專(zhuān)家級(jí)研究者靈活選擇。
選擇EddyPro®的理由
√ 支持SmartFlux® 2系統(tǒng),用于野外實(shí)時(shí)通量計(jì)算
√ 整合Biomet生物氣象傳感器系統(tǒng)和通量系統(tǒng)的數(shù)據(jù)計(jì)算
√ 輸出結(jié)果是Tovi渦度協(xié)方差數(shù)據(jù)分析軟件的數(shù)據(jù)源
√ 使用分析和實(shí)地方法進(jìn)行復(fù)雜的譜線評(píng)估(Comprehensive spectral assessment using both analytical and in situ methods)
√ 可實(shí)現(xiàn)絕大多數(shù)渦度協(xié)方差研究的精確通量計(jì)算
√ 簡(jiǎn)單易學(xué)——從事渦度協(xié)方差研究的新手也能很快掌握
√ 方便使用——輕松點(diǎn)擊即可完成多步程序的運(yùn)行
√ 可直接運(yùn)行LI-COR渦度協(xié)方差系統(tǒng)的GHG數(shù)據(jù)
√ 基于IMECC* 平臺(tái)開(kāi)發(fā),結(jié)果經(jīng)EdiRE及其他多款常用軟件所驗(yàn)證
√ 默認(rèn)設(shè)置及參數(shù)均以的常規(guī)通量計(jì)算方法為基礎(chǔ)
√ 可提供GHG-Europe和AmeriFlux標(biāo)準(zhǔn)格式數(shù)據(jù)輸出
√ 完整的在線視頻教程
√ 智能程序管理,便于原始數(shù)據(jù)的重計(jì)算
√ 由專(zhuān)業(yè)的LI-COR技術(shù)支持團(tuán)隊(duì)研發(fā)和維護(hù)
* 注:IMECC即Infrastructure for Measurements of the European Carbon Cycle
EddyPro Express VS EddyPro Advanced
EddyPro Express (默認(rèn)修正,快速方便) | EddyPro Advanced (用戶可選,強(qiáng)大靈活) | |
坐標(biāo)旋轉(zhuǎn)修正 | 二次坐標(biāo)軸旋轉(zhuǎn) | 二次坐標(biāo)軸旋轉(zhuǎn) 三次坐標(biāo)軸旋轉(zhuǎn) 基于風(fēng)區(qū)的平面坐標(biāo)擬合 基于風(fēng)區(qū)無(wú)速率偏差的平面坐標(biāo)擬合 不做修正 |
除趨勢(shì)修正 | 塊平均 | 塊平均 線性除趨勢(shì) 滑動(dòng)平均 指數(shù)加權(quán)平均 |
數(shù)據(jù)同步 | 默認(rèn)值下協(xié)方差(循環(huán)相關(guān)) | 默認(rèn)值下協(xié)方差 默認(rèn)值缺失下的協(xié)方差 常量 不做修正 |
統(tǒng)計(jì)檢驗(yàn) | 異常值計(jì)數(shù)/去除 振幅分辨率 缺失值 限度 偏度和峰度 | 異常值計(jì)數(shù)/去除 振幅分辨率 缺失值 限度 偏度和峰度 間斷點(diǎn) 時(shí)滯 迎角 水平風(fēng)穩(wěn)定度 不做檢測(cè) |
密度修正 | 通過(guò)WPL修正(Webb 等,1980)或點(diǎn)對(duì)點(diǎn)轉(zhuǎn)換的方式換算為混合比 | 使用(或換算成)混合比(Burba 等,2011) 就開(kāi)路渦度系統(tǒng)而言,通過(guò)Webb 等(1980)方法進(jìn)行修正; 就閉路渦度系統(tǒng)而言,通過(guò)lbrom 等,(2007)方法進(jìn)行修正 針對(duì)LI-7500的非生長(zhǎng)季吸收修正(Burba 等,2008) 不做修正 |
超聲虛溫修正 | Van Dijk等(2004) | Van Dijk 等(2004) |
譜修正 | 高通濾波修正(Moncrieff等,2004) 低通濾波修正(Moncrieff等,1997) | 高通濾波修正(Moncrieff等,2004) 低通濾波修正,可選: Moncrieff等(1997) |
迎角修正 | 是 | 是 |
數(shù)據(jù)質(zhì)量控制標(biāo)記 | 依據(jù)Foken等(2004)進(jìn)行檢測(cè) | 根據(jù)Mauder和Foken(2004)進(jìn)行檢測(cè) 根據(jù)Foken(2003)進(jìn)行標(biāo)記 在進(jìn)行這項(xiàng)操作(Gockede等,2004)之后進(jìn)行標(biāo)記 |
足跡估測(cè) | Kljun等(2004) | Kljun等(2004) Kormann和Meixner (2001) Hsieh等(2000) |
LI-7700光譜修正 | 是(McDermitt等, 2010) | 是(McDermitt等, 2010) |
文件輸出 | 通量、質(zhì)量標(biāo)記和其他數(shù)據(jù)完整輸出 美國(guó)通量數(shù)據(jù)格式 GHG 歐洲通量數(shù)據(jù)格式 原始數(shù)據(jù)統(tǒng)計(jì) | 列表可選: 通量、質(zhì)量標(biāo)記和其他數(shù)據(jù)完整輸出 美國(guó)通量數(shù)據(jù)格式 GHG 歐洲通量數(shù)據(jù)格式 原始數(shù)據(jù)統(tǒng)計(jì) 全長(zhǎng)度譜和協(xié)譜分析 箱式譜和協(xié)譜分析 箱式累積頻率 穩(wěn)態(tài)和湍流檢測(cè)細(xì)節(jié) 每次統(tǒng)計(jì)檢測(cè)/修正之后的時(shí)間序列原始數(shù)據(jù) |
References:
Foken, T., M. G?ckede, M. Mauder, L. Mahrt, B. D. Amiro, and J. W. Munger. 2004. Post-field data quality control. In X. Lee, et al. (ed.), Handbook of Meteorology. 35: 409-414.
Fratini, G., N. Arriga, C. Trotta, D. Papale. 2010. Underestimation of water vapour fluxes by eddy covariance closed-path systems due to relative humidity effects. American Geophysical Union Fall Meeting. Abstract #B11D-0400.
G?ckede, M., C. Rebmann, T. Foken, 2004. A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites. Agricultural and Forest Meteorology, 127: 175-188.
Horst, T. W. 1997. A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors. Boundary Layer Meteorology, 82: 219-233.
Ibrom, A., E. Dellwik, H. Flyvbjerg, N. O. Jensen, and K. Pilegaard. 2007. Strong low-pass filtering effects on water vapour flux measurements with closed path eddy covariance systems. Agricultural and Forest Meteorology, 147: 140-156.
Kaimal, J. C., and J. E. Gaynor. 1991. Another look at sonic thermometry, Boundary Layer Meteorology, 56: 401-410.
Kljun, N., P. Calanca, M. W. Rotach, and H. P. Schmid. 2004. A simple parameterization for flux footprint predictions. Boundary Layer Meteorology, 112: 503-523.
McDermitt, D., G. Burba, L. Xu, T. Anderson, A. Komissarov, B. Riensche, J. Schedlbauer, G. Starr, D. Zona, and W. Oechel, S. Oberbauer, and S. Hastings. 2010. A new low-power, open path instrument for measuring methane flux by eddy covariance. Applied Physics B: Laser and Optics, 102: 391-405.
Moncrieff, J. B., R. Clement, J. Finnigan, and T. Meyers. 2004. Averaging, detrending and filtering of eddy covariance time series, in Handbook of micrometeorology: A guide for surface flux measurements, eds. Lee, X., W. J. Massman and B. E. Law. Dordrecht: Kluwer Academic, 7-31.
Moncrieff, J. B., J. M. Massheder, H. de Bruin, J. Elbers, T. Friborg, B. Heusinkveld, P. Kabat, S. Scott, H. Soegaard, and A. Verhoef. 1997. A system to measure surface fluxes of momentum, sensible heat, water vapor and carbon dioxide. Journal of Hydrology, 188-189: 589-611.
Schuepp, P. H., M. Y. Leclerc, J. I. MacPherson, and R. L. Desjardins. 1990. Footprint prediction of scalar fluxes from analytical solutions of the diffusion equation. Boundary Layer Meteorology, 50: 355-373.
Van Dijk, A., A. F. Moene, and H. A. R. de Bruin. 2004. The principles of surface flux physics: Theory, practice and description of the ECPACK library, Internal Report 2004/1, Meteorology and Air Quality Group, Wageningen University, Wageningen, the Netherlands, 99 pp.
Vickers, D. and L. Mahrt. 1997. Quality control and flux sampling problems for tower and aircraft data. Journal of Atmospheric and Oceanic Technology, 14: 512-526.
Webb, E. K., G. I. Pearman, and R. Leuning. 1980. Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106: 85-100.
您可以登陸美國(guó)LI-COR公司網(wǎng)站免費(fèi)下載EddyPro軟件